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SUMMARY

Within the framework of the �nite element method problems with corner-like singularities (e.g. on
the well-known L-shaped domain) are most often solved by the adaptive strategy: the mesh near the
corners is re�ned according to the a posteriori error estimates. In this paper we present an alternative
approach. For �ow problems on domains with corner singularities we use the a priori error estimates
and asymptotic expansion of the solution to derive an algorithm for re�ning the mesh near the corner.
It gives very precise solution in a cheap way. We present some numerical results. Copyright ? 2005
John Wiley & Sons, Ltd.
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INTRODUCTION

In papers [1, 2] we solved the problem with corner singularities by means of an adaptive
re�nement strategy based on a posteriori error estimates. In this paper we present an alterna-
tive approach to the adaptive mesh re�nement. It is based on knowledge of the singularity near
the corner. For steady Navier–Stokes equations we proved in Reference [3] that for noncon-
vex internal angles the velocities near the corners possess an expansion u(�; #)=��’(#)+ · · ·
(+ smoother terms), where �; # are local spherical co-ordinates. The local behaviour of
the solution near the singular point is used to design a mesh which is adjusted to the shape
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of the solution. We show an example of a 2D mesh with quadratic polynomials for velocity.
Then we use this adjusted mesh for the numerical solution of �ow in the channel with corners.

MODEL PROBLEM

We consider two-dimensional �ow of a viscous, incompressible �uid described by the Navier–
Stokes equations in a domain with corner singularity, cf. Figure 1.
Due to symmetry, we solve the problem only on the upper half of the channel.
Let us denote this domain �⊂R2. The steady Navier–Stokes problem for the incompressible

�uid consists in �nding the velocity v=(v1; v2), and pressure p de�ned in � and satisfying

(v · ∇)v − ��v+∇p= f (1)

∇ · v=0 (2)

together with boundary conditions on disjoint parts of the boundary �in, �wall and �out (meaning,
respectively, the inlet, the wall, and the outlet part)

v= g on �in ∪�wall (3)

�
@v
@n

− pn=0 on �out (‘do nothing’ boundary condition) (4)

We consider kinematic viscosity �=0:000025m2=s and vin max = 1m=s, which gives a max-
imum Reynolds number around 760. We do not consider volumetric loads f =(f1; f2).

ALGORITHM DERIVATION

In Reference [3] we proved for the Stokes �ow in axisymmetric tubes that for internal angle
�= 3

2�, like in Figure 1, the leading term of the expansion of the solution for the velocity
components is

vl(�; #)=�0:54448374’l(#) + · · · ; l=1; 2 (5)

Figure 1. Geometry of the channel.
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where � is the distance from the corner, ’1 is some smooth function of the angle #. The
same expansion is known to apply to the plane �ow, cf. Reference [4]. Similar results were
proved for the Navier–Stokes equations. Di	erentiating by � we observe @vi(�; #)=@� → ∞
for �→ 0.
A priori estimate of the �nite element error is (cf. Reference [5])

‖∇(v − vh)‖0 + ‖p− ph‖06C
[(∑

T
h2kT |v|2Hk+1(T )

)1=2
+

(∑
T
h2kT |p|2Hk (T )

)1=2]
(6)

where k=2 for the Taylor–Hood elements we use. Taking into account expansion (5), we
derived in Reference [3] the estimate

|v|2Hk+1(T ) ≈C
∫ rT

rT−hT
�2(�−k−1)� d�≈Cr2(�−k)T (7)

where hT is the diameter of the triangle T of a triangulation Th, and rT is the distance of the
element T from the corner. Here � is the exponent at � in expansion (5); �=0:54448374 for
internal angle �= 3

2� (cf. Reference [3]).
Putting (7) into the a priori error estimate (6), we derive that we should guarantee

h2kT [−r2(�−k)T + (rT − hT )2(�−k)]≈ h2k (8)

in order to get the error estimate of the order O(hk) and uniformly distributed on elements.
After simpli�cations we produced the approximate expression

h2kT r
2(�−k)
T ≈ h2k (9)

This led us in Reference [3] to an algorithm for generating the mesh near the corner in
recursive form:

hi = h · (ri)1−�=k (10)

ri+1 = ri − hi; i=1; 2; : : : ; N (11)

where r1 is the distance of the large element from the corner. Using this algorithm we obtained
satisfactory results. Some of them were presented in Reference [6].
At present, we have a program for computing the element sizes directly from expression (8)

using Newton’s method. This algorithm for mesh re�nement is applied to the corner where
the channel or tube suddenly decreases the diameter (forward step in Figure 1). We start with
r1 = 0:25 mm, h=0:1732 mm, k=2, �=0:5444837. This corresponds to cca 3% of relative
error on equidistributed elements. This way we get 14 diameters of elements, cf. Table I.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 47:1285–1292



1288 P. BURDA, J. NOVOTN �Y AND J. �S�ISTEK

Table I. Resulting re�nement.

i ri (mm) hi (mm) i ri (mm) hi (mm)

1 0.25000 0.0600369 8 0.02311 0.0085813
2 0.18996 0.0480779 9 0.01453 0.0058366
3 0.14189 0.0379492 10 0.00869 0.0037980
4 0.10394 0.0294666 11 0.00489 0.0023392
5 0.07447 0.0224535 12 0.00255 0.0013434
6 0.05202 0.0167410 13 0.00121 0.0007042
7 0.03527 0.0121680 14 0.00050 0.0005042

DESIGN OF THE MESH

In Reference [6], we showed that the best way to use data given by the algorithm is to design
the mesh in correspondence with the polar co-ordinate system due to its usage in estimates.
We continue this idea and design a two-dimensional mesh near the corner with singularity
as can be seen in Figure 2. This ‘patch’ is connected to the whole computational mesh, cf.
Figures 3 and 4.

EVALUATION OF THE ERROR

To evaluate the error on elements we use now the modi�ed absolute error computed using
a posteriori error estimates, de�ned as

A2
m(v

h
1; v

h
2; p

h;�l)=
|�|E2(vh1; vh2; ph;�l)
|�l|‖(vh1; vh2; ph)‖2V;�

(12)

where E2(vh1; v
h
2; p

h;�l) is the estimate of the error on element l, |�| is the area of the whole
domain and |�l| is the mean area of elements obtained as |�l|= |�|=n: Here, n means the
number of all elements in the domain. More about the evaluation of the error can be found
in References [1, 2].

NUMERICAL RESULTS

In Figures 5–8 we present the graphical output of entities that characterize the �ow in the
channel. In Figure 5 there are the streamlines in the channel. Figure 6 with contours of
velocity vy shows that the solution is satisfactorily smooth on the re�ned area. In Figures 7
and 8 we can observe how strong the singularity is, both for velocity and pressure (note that
here the �ow is from the right to the left, to have better view). In Figures 9 and 10 we show
the errors on elements.
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Figure 2. Re�ned detail of mesh.

Figure 3. Computational mesh near the corner.

Figure 4. Whole computational mesh.
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Figure 5. Streamlines.
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Figure 6. Isolines of velocity vy.

Figure 7. Velocity component vy.

Figure 8. Pressure near the corner.
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Figure 9. Errors on elements—whole re�ned area.
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Figure 10. Errors on elements—detail.
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CONCLUSIONS

Presented results give satisfactory con�rmation of the algorithm. The application of a priori
error estimates of the �nite element method for mesh re�nement near the singularity is very
e
cient for our problem. This can be seen especially in the errors indicated on elements: the
errors are distributed very uniformly.
The algorithm we derived is unique for the design of the mesh close to an internal angle of

3
2�. Nevertheless, it admits to generate the mesh for other angles as well, in accordance with
the parameter � which must be found for the respective angle. The approach in this paper
is an alternative to the ‘classical’ one, using adaptive mesh re�nement, which is still much
more robust.
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